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Modal parameter identification is used to identify those parameters of the model which
describe the dynamic properties of a vibration system. Classical modal parameter
extractions usually require measurements of both the input force and the resulting
response in laboratory conditions. However, when large-scale operational structures are
subjected to random and unmeasured forces such as wind, waves, or aerodynamics, modal
parameters estimation must base itself on response-only data. Over the past years, many
time-domain modal parameter identification techniques from output-only have been
proposed. Among them, the natural excitation technique (NExT) has been a very powerful
tool for the modal analysis of structures excited in operating environment. This issue
reviews the theoretical development of natural excitation technique (NExT), which uses the
cross-correlation functions of measured responses coupling with conventional time-domain
parameter extraction under the assumption of white-noise random inputs. Then a
frequency-domain poly reference modal identification scheme by coupling the cross-
correlation technique with conventional frequency-domain poly reference modal parameter
extraction is presented. It uses cross-power spectral density functions instead of frequency
response functions and auto- and cross-correlation functions instead of impulse response
functions to estimate modal parameters from response-only data. An experiment using an
airplane model is performed to investigate the effectiveness of the cross-correlation
technique coupled with frequency-domain poly reference modal identification scheme.

© 2002 Elsevier Science Ltd. All rights reserved.

1. INTRODUCTION

Classical modal parameter identifications are usually based on frequency response
functions or impulse response functions that require measurements of both the input force
and the resulting response. However, for some practical reasons, modal parameter must be
extracted only from response data sometimes. For example, for large structures (such as
bridges, offshore platforms, and wind turbines), it is very difficult and expensive to
measure actual excitation (such as wind, road noise, and wave excitation). The huge
amount of energy necessary to induce structural vibrations may cause local damage and
excitation becomes very difficult to generate. Additionally, the real operating conditions
may differ significantly from the laboratory conditions as the systems are to some extent
non-linear or subject to non-linear constraining conditions (e.g., aero-elastic interaction of
aircraft in flight) [1]. Sometimes it is not suitable to predict the correct system behavior
with the in-laboratory obtained modal models. Therefore, in these applications, the system
identification must be done on the basis of response-only data available.
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The problem of output-only modal analysis has gained considerable attention in recent
years. There have been several different approaches to estimate modal parameters from
output-only data. They include peak-picking from power spectral density (PSD) functions
[2-4], Least-squares curve fitting technique [5, 6], autoregressive moving average (ARMA)
models [1, 7-10], the subspace techniques [11-15], and the natural excitation technique
(NEXT) [16, 17] using cross-correlation functions instead of impulse response functions
coupled with some time-domain modal identification schemes such as the random
decrement processing with the Ibrahim time-domain (ITD) technique [18], the maximum
entropy method (MEM) [6], and the polyreference least-squares complex exponential
(PRLSCE) method [1, 11]. The natural excitation technique using cross-correlation
functions in time domain has been a very powerful tool for the modal analysis of
structures under ambient excitation. However, among them, there are only a limited
number of approaches in the frequency domain applicable to modal identification of
structures using response data, such as the peak-picking technique to the auto- and cross-
power spectra of the operational responses [2—4], and the curve-fitting technique to seek
optimal modal parameters [5]. The peak-picking method has been a typical frequency-
domain method on response-only, but it suffers from some disadvantages. For example,
the modes of the structure should be sufficiently far apart and requires a lot of engineering
skills to select the peaks that correspond to system resonances. Although the curve-fitting
technique can eliminate these disadvantages, it often meets the minimization problem that
is strongly non-linear and methods of linear algebra are not directly applicable to get the
solution. In practice, additional assumptions are commonly used to simplify the
minimization problem, which usually leads to reduction in the accuracy of the
reconstructed eigenvalues and eigenvectors.

The proposed technique in this paper couples the cross-correlation technique with the
conventional frequency-domain poly reference parameter extraction to estimate modal
parameters from response-only. It uses cross-power spectral density functions between the
outputs instead of frequency response functions and auto- and cross-correlation functions
instead of impulse response functions to estimate modal parameters from response-only
data. The presented scheme has none of the above disadvantages of the peak-picking
technique and the curve-fitting technique applied to the power spectra. This issue reviews
the theoretical development of natural excitation technique (NExT) and gives how the
modal parameters can be determined by the proposed frequency-domain technique for a
linear, complex-mode system under the white-noise excitation. An application of the
method is presented for an airplane model.

2. THEORETICAL ASPECTS
2.1. THEORETICAL DEVELOPMENT OF NATURAL EXCITATION TECHNIQUE (NEXT)

The following derivation holds for a general class of stationary random inputs. We can
describe the behavior of the system by the equations of motion [16]:

[(M{5(0)} + [CHy ()} + Ky} = {/(D}, (1)

where [M] is the mass matrix, [C] is the damping matrix, [K] is the stiffness matrix, { f(¢)}
is the vector of random forcing function, {y(¢)} is the vector of random displacements.
Let us introduce

(M{y(0)} — [M]{p(0)} = {0}, 2)
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Combining equation (1) with equation (2) results in the state-space model correspond-
ing to the dynamic equations [15]:

A0} + B{Y ()} = (F()), 3
where
(i ). (Ko i) 0}
A= o P o g T {{ym}}{”)} { 0) }

We can use a modal transformation:

{Y()} = [¢Ha()} = {g(0)}, 4)

W]

where [¢] is the 2N, x 2N,, complex modal matrix, {¢g(z)} is the 2N,, x 1 vector of
modal co-ordinates, [{] is the N, x 2N,, mode shape matrix, [A] is the 2N,, x 2N,
complex eigenvalue matrix, N,, is the number of system d.o.f..
Then we can derive
2N,

0} = WHa}y =Y _{¥.}ar(0), ()
r=1

where {,}is the vector of the rth mode shape, ¢,(¢) is the rth component of vector {¢()}.
We use the orthogonality of mode shapes

6" [4)[¢] = [a], (] [B[$] = [b], (6)
where T denotes the transpose, [a], [b] are diagonal matrices.
Premultiplying equation (3) by [¢]" gives
[ AT (0} + (@] [BILY ()} =[] {F (1)} ()
Substituting equation (4) into equation (7) results in the following:
B [4)[¢Ha(0} + [#]" [Bllol{a(1)} = [$] {F (1)} (8)
A set of scalar equations in the modal co-ordinates can be given as follows:
arq.r<t) + err(t) = {Wr}T{f(t)}a (9>

where a,, b, are the elements of diagonal matrices [«], [b].
The solution of equation (9) can be obtained from Duhamel integral assuming zero
initial conditions:

R AROT Y (10

where A, = —b,/a,.
Equations (5) and (10) can now be used to obtain the solution for {y(¢)}:
2Nm

0= {w}/ T (1)) dr. (1)

The response y,(t) at the nth d.o.f. due to a single input force f;(¢) at the /th d.o.f. can
be derived as

yn/ Z lpnrlplr/ fl A([ Y T, (12)

where V,,, is the nth component of the rth mode shape vector {y,}.
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Define the cross-correlation function R,,/(7T) as the expected value of the product of
two stationary responses y,;(¢) and y,(¢) due to the single input at the /th d.o.f. evaluated
at a time separation of 7 [18]:

Rnpl(T) = Elyu(t + T)ypz(f)}, (13)

where E is the expectation operator.
Substituting equation (12) into equation (13) results in the following:

2N,, 2N,,
Rop(T ZZaravm,wm | / A T=0) 0 B fi(0)f(0)] do de. (14)

r=1 s=
Assuming f;(¢) is white noise, then
E[fi(0)fi(7)] = ud(t - a), (15)
where a; is a constant and 6(¢) is the Dirac delta function.

Substituting equation (15) into equation (14) and collapsing the integration produces
the following:

2N,, 2N,
R al‘/’nrlphlpps‘//ls ) T

RnPl(T) = aras( )L’ — /Ls)

(16)

r=1 s=1
Summing over all the inputs f;(¢),/ = 1,2, ..., L, which are assumed to be uncorrelated
with one another, we can get the cross-correlation function R,,(T) between the output n
and the output p:

2Ny

T) = Z lpnr QP" 6)"'T7 (17)
r=l1

where Q,, is a new constant defined by

2N,
L & _al‘plrlppsw/s

Opr = Z Z aras(Ay + Ag)

s=1 [=1

(18)

It shows that the cross-correlation function in equation (17) is a sum of complex
exponential functions of the same form as the impulse response function of the original
system in the following:

2N,
hnl(l) = Z lpnr Wi ekrr7 (19)
r=1

where /,(¢) is the impulse response at point n due to the input force at point /, W}, is the

modal participation factor.
Consequently, the classical modal parameter techniques using impulse response
functions as input like eigensystem realization algorithm (ERA) and poly-reference
least-squares complex exponential (PRLSCE) method are appropriate to extract

the modal parameters from response-only. This technique is generally referred to as
NEXT [16].

2.2. POWER SPECTRAL DENSITY FUNCTIONS WITH THE SAME FORM AS FREQUENCY
RESPONSE FUNCTIONS

The Fourier transform of the impulse response function /,(7) in equation (19)
can be performed, then the frequency response function H,(jw) can be expressed as
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follows:

2N,
o) = Y Lol (20)

r=1

The cross-power spectral density function G, (jw) is the Fourier transform of the cross-
correlation function R,,(7) in equation (17), and can be expressed as

2N,
o) = 3 2. 1)

r=1

It can be easily shown that the cross-power spectral density function in equation (21) is a
sum of fraction functions of the same form as the frequency response function of the
original system in equation (20). Each fraction has a pole that implies a natural frequency
and damping ratio corresponding to a structural mode, and the residue y,,.Q,, in equation
(21) and ¥, W), in equation (20) are proportional to the nth component ,, of the mode
shape {y,}. It is well known that the term ,, W}, in the frequency response function in
equation (20) can be identified as the mode shape component. When the input forces are
not measurable, the residue .0, in equation (21) can be used to derive the complete
mode shape by selecting a common reference station p to eliminate the term Q,,.
Consequently, the cross-power spectral density functions between responses can be used to
estimate modal parameters from output-only instead of frequency response functions in
frequency-domain modal identifications.

2.3. THE FREQUENCY-DOMAIN POLY-REFERENCE MODAL EXTRACTION FROM
RESPONSE-ONLY

In conventional modal analysis, the frequency-domain poly-reference modal identifica-
tion using frequency response functions [19] is a well-known technique to derive global
estimates of modal parameters.

From equation (19), we obtain the impulse response function matrix at N response
stations due to force inputs at points 1,2,...,L:

[h(1)] = Wle™ W1, (22)

where [A(#)] is the impulse response function matrix, [I#] is the modal participation factor
matrix.
We can get the first derivatives of the above equation as

[h(0)] = WAl [W]. (23)
The Laplace transform of equations (22) and (23) can be, respectively, derived as
[H(s)] = [W)(s(2] = [4]) 7' 7] (24)
and
[H ()] = WIlA](sl1] =[]~ ], (25)

where [H (s)] is the transfer function matrix, [/] is a unit matrix.
Let us constitute a new matrix equation with equations (24) and (25) as

L B 7
[[Hm]] - [MAH]( (1] = (4D~ ] = [#l[0(s)], (26)

where [O(s)] = (s[1] - [4])~'[W].
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In this method, a system matrix [X] is defined so that it satisfies

[(XT[W] + [1[4] = [0]. (27)
It can be rewritten as
: V] ;
[[XT: (1]} il | = [XT:[])[¢] = [0]. (28)
Postmultiplying the above equation by [O(s)], according to equation (26), we can obtain
[(XTNgl[OCs)] = [[X]:[7]] l[f-l(s)]] = [0]. (29)
[H (s)]
Equation (29) can also be expressed in the following way:
[X][H (s)] + [H (s)] = [0]. (30)
According to the following relationship
[H (s)] = s[H (5)] = [h(D)]] - (31)
Equation (30) can be written as
(XT[H (s)] + s[H ()] = [h(1)]],=o = [0]- (32)
Let s = jw, we can get
[X][H ()] +jolH (jo)] = [A(1)]] = = [0], (33)

where [H (jw)] is the frequency response function matrix.

It has been shown that, under the assumption that the system is excited by stationary
white noise, cross-correlation functions between the outputs have the same form as
impulse response functions and power spectral density functions as frequency response
functions. Subsequently, the frequency-domain poly-reference modal identification is
appropriate to extract the modal parameters from response-only data measured under
operational conditions by using the power spectral densities of responses instead of
frequency response functions and cross-correlation functions instead of impulse response
functions.

Define the auto- and cross-correlation function matrix [R(T)] between N and P
responses which serve as references as

R (T) Rp(T) -+ Rip(T)
Ry (T) Rxn(T) -+ Rup(T)

[R(T)] = : : Do : ' (34)
Ryi(T) Rno(T) -+ Ryp(T)

Equations (17) and (34) can now be used to obtain
[R(T)] = [¥][e""]]Q. (35)

where [Q] is a constant matrix filled up with the term O, and at 7' = 0, the following
results:

[R(T)]l =0 = WI[Q]. (36)
From the Fourier transform of equation (35), we also can get

[G(jo)] = [W]Gell] — [4)'[0], (37)
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where [G(jw)] is the auto- and cross-power spectral density function matrix of measured
responses.

Using the cross-power spectral density function matrix [G(jw)] instead of the frequency
response function matrix [H(jw)] and the auto- and cross-correlation function matrix
[R(T)] instead of the impulse response function matrix [A(z)] in equation (33), the
following results:

[X][G(jw)] + jo[G(jw)] — [R(T)]|7— = [0]. (38)
Substituting equation (36) into equation (38), we can get
(X][G(jo)] +jo[G(jw)] — [Y][Q] = [0]. (39)
An over-determined set of equations can be obtained for all discrete frequencies
Wy, W, ...,wkg in the frequency range of measurement:
(X][G(jo1)] — ][] = —jou[G(jeor)], (40)
[(X][G(jw2)] = W[Q] = —ja[G(je2)], (41)
[(X][G(jok)] — W][0] = —jwk[G(iwk)]. (42)
These equations can also be written as
(D] _
1Y - Wil [ wom | P (43)
where
[D] = [[G(jo)]  [G(iw2)] ... [G(jwx)]],
[Q] = —diag[jwl[l] jen[I] ... ijV]]-

From equation (43), we can get

V] = [[x]: - Wl[Q)) = [Pl[2] (44)

n
[D]
[ - my
where + denotes the generalized inverse. The matrix [V] can be obtained in a least-squares
sense by considering all available of the measured power spectral densities. The matrix [X]
is given by the first N columns of matrix [}], and the negative of matrix [yy] [Q] is given by
the last P columns (from N + 1 to N + P) of matrix [V].
According to equation (27), an eigenvalue problem can be formulated as

(XI{,} + 44y, } = {0} (45)

Once the system matrix [X] is known, in the case of complex conjugate pairs being
considered, 2N complex eigenvalues A, and 2N complex eigenvector {i,} can be obtained
from equation (45). The poles 4, of the original vibrating system can be used to obtain the
damped natural frequency w,, by the following equation:

wnr - \/R +Irn r) N (46)
And the damping ratio ¢, of the rth mode can be given by
R.(2,
g = - Rdb) (47)
wnr

where R,(-) denotes the real part, I,,(-) denotes the imaginary part.
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The rth eigenvector {i,} corresponding to the eigenvalue A, of the system matrix [X] is
just the rth mode shape of the vibrating system.

2.4. POWER SPECTRAL DENSITY SYNTHESIS

Equation (39) can be expressed as follows:
((X]+jol])[G(w)] = [][Q]. (48)

Let [J] = [y][Q], the auto- and cross-power spectral density matrix [G(jw)] between the
outputs can be written as

[G(j)] = ([X] +jeol1]) " [1]. (49)

It can be easily shown that matrix [G(jw)], [G(jw2)], ..., [G(jwk)] can be derived from
equation (49) by considering all frequencies in the selected frequency interval. Therefore, it
can be used to graphically check the quality of the output-only modal model by overlaying
the actual test data with the synthesized data.

2.5. REDUCTION OF MODEL ORDER

In some applications, the number of measured locations N is often greater than the
number of system modes N, in the frequency range of interest. When matrix [V] is
obtained from equation (43), it will be time and core storage consuming and lead to the
spurious modes. Therefore, the selection of model order should be done to solve this
problem. Inspection of the singular values [20] might be helpful for finding the correct
model order in the proposed frequency-domain modal identification.

Define a co-ordinate square difference matrix as

2] = > Re([G(wx)] [GM ok ), (50)
k=1

where ™ denotes the complex conjugate and matrix transpose.
Performing an SVD decomposition on matrix [Z] gives the following:

1] [O]H[Sl]T
O] O] [[Sa]"

where [2] contains N, non-zero singular values in descending order with

[Z] = [U]I2](S)" = [[U]  [Ua]] = [w]zis, (51)

[Z]] :diag[slez...em], e1=26y...6n. >0, (52)

[Ui] is an N x N, matrix which contains the singular vectors corresponding to non-zero
singular values, [U,] is an N x (N — N,) matrix which contains the singular vectors
corresponding to zero singular values. The model order is estimated as N, by truncating
the singular values. In practice, the engineer often select N, such that ey, > eney.

Matrix [U;]" can be used to reduce the order of power spectral density matrix [G(jo)] as
the following:

[G(0)yeas = (1] [G(i0)], (53)

where [G(jw)),.4, 15 @ matrix with dimension N, x P. In practical computing, feeding
order-reduced matrix [G(jw)],,, instead of matrix [G(jw)] in equation (44) allows to
obtain order-reduced system matrix [X],,,, with dimension N, x N,. Solving an eigenvalue
problem of matrix [X],,,, can lead to the evaluations of 2N, discrete complex eigenvalues
and 2N, complex eigenvectors in the case of complex conjugate pairs being considered.
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The eigenvalues 4, can be used to estimate the damped natural frequency w, and the
damping ratio &, of the original vibrating system according to equations (46) and (47).
Substituting equation (37) into equation (53) produces the following:

[G(0)eae = [T W) Ge0lT] = [A]) 0] = Wy old] = [4]) 7' [Q), (54)

where [/],,,, 18 the order-reduced eigenvector matrix.
We can get
e = (U] W], (55)
The mode shape matrix [/] of the vibrating system at the sensor locations can be given by
W' = Wea (0N (56)

Sometimes the criteria of an SVD technique is not of great use as a drop or a break
between singular values is not apparent in practice. Other techniques such as stabilization
diagrams are needed in order to find the correct model order.

3. APPLICATION

In this context, a case study was performed employing the data acquired from a test
conducted on an airplane model in order to assess the usefulness of the algorithm
described above for modal identification from response-only.

3.1. DESCRIPTION OF TEST STRUCTURE AND TESTS

The airplane model is made of aluminum and the fuselage is 1000 mm long and the
wingspan 1100 mm wide. It was suspended on three flexible threads at the fuselage. The
responses were measured only in the vertical direction at 24 points for vertical excitation at
two symmetrical excitation points. Figure 1 shows the distribution of the 24 acceleration
transducers.

Two uncorrelated white noise signals were applied to the 2 shakers. Figure 2 shows the
auto-power spectral densities of the two input forces, revealing that the actual excitation
was not perfectly flat due to the interaction between shaker and structure. The MVMAS-3
multi-vibration measurement and analysis system with 64 input channels was employed to

O
o Suspending Point

o Measuring Point

Excitation o Excitation
o o o
1 o o o|O]o o o 2
1 L
3 4

Figure 1. The airplane model with indication of the distribution of transducers.
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Figure 2. Auto-power spectral density of the input forces. (a) The auto-power spectral density of left input
force and (b) the auto-power spectral density of right input force.

acquire the response data at the 24 locations with a sampling rate of 512 Hz, which results
in a bandwidth of 0-200 Hz. The responses from 24 acceleration transducers were
converted into displacement response signals by computing. Then all the responses were
chosen as reference points and the auto- and cross-power spectral densities of all the
responses were calculated for the output-only modal analysis, which enables a global
estimate of modal parameters of the structure. The segment size equaled 1024 and no
overlap was used. A Hanning window was used to avoid leakage, and about 40 averages
were performed for 40960 data samples corresponding to a signal duration of 80s. The
singular value truncation technique was used to reduce the model order when the number
of measured locations is greater than the number of modes. The order-reduced cross-
power spectral density matrix was fed to the technique presented in this paper to extract
the modal parameters from output-only.

The modal parameters were obtained using multi-point pure mode excitation technique,
yielding the baseline model for comparison purposes.
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3.2. TEST RESULTS

In the frequency range 0-200 Hz, the break in singular values of matrix [Z] occurs
between 18 and 19 as shown in Figure 3. It can also be seen from Table 1 that the largest
ratio of two adjacent singular values is 13-533 between 18 and 19 but the others are much
less. The order of the model in the presented scheme can be considered as 18. However,
sometimes the inspection of singular values does not show a significant drop, and this
information will have an influence upon the selection of system mode number in the
interested frequency range. A lower value for the model order will result in omitted system
modes. When the number of the model order is chosen higher than the number of true
modes, the spurious modes will be introduced and the computational load will increase. In
this case, other techniques such as stabilization diagrams are then needed to help finding
the correct model order.

Table 2 lists the results for all found modes without counting the rigid-body modes from
both multi-point pure mode excitation technique and the presented frequency-domain
poly-reference modal identification with power spectral densities. In addition to the
frequencies and damping ratios, the modal assurance criterion MAC-value between the
mode shapes extracted by multi-point pure mode excitation method and the mode
shapes extracted by the technique described above are given. Both the frequencies and

10*
10° | *++ ]
10° L * ]
10" L * ]

10° b i

Singular values
*

10t ]

=

o
w
*

0 5 10 15 20 25
Number of singular values

Figure 3. Singular values of coordinate square difference matrix [Z].

TABLE 1

Singular values of co-ordinate square difference matrix [Z]

No. 1 2 3 4 5 6 7 8
Singular value  2095-4 1229-0 1115-0 437-4 3579 286-1 2339 1477
No. 9 10 11 12 13 14 15 16
Singular value 101-5 729 343 259 20-0 13:5 4.72 2-62
No. 17 18 19 20 21 22 23 24

Singular value 0-61 0-19 0-014 0-0062  0-0042  0-0028 0-0026  0-0015
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TABLE 2

Comparison of modal parameters from two different techniques

Mode no. Symmetry/  Multi-point pure mode Frequency-domain modal identification
antisymmetry excitation method technique from output-only
Freq. (Hz) Damping (%) Freq. (Hz) Damping (%) MAC (%)
1 S 14-8 5-14 153 4.76 98-2
2 A 23.6 0-86 24.2 0-36 99-1
3 A 351 4.25 362 4.05 98-6
4 S 450 1-67 449 201 99-2
5 A 52:5 311 52-4 3.53 98-4
6 S 63-4 1-50 64-7 1-61 99-0
7 A 69-2 1-45 69-6 170 96-7
8 S 74-8 6-56 753 5-05 83.2
9 A 91-5 1-02 92-3 1-35 92-1
10 S 98-7 1-36 97-6 0-92 98-8
11 A 107-3 0-93 107-3 0-96 89-3
12 A 1129 1-58 111-7 1-05 90-9
13 S 143-5 0-70 143-4 0-82 96-5
14 S 151-5 0-39 150-7 0-64 98-8
15 A 158:3 0-48 158-2 0-39 99-0
16 S 170-2 1-05 170-8 0-88 97-6
17 A 173-3 0-54 173-4 0-52 82:5
18 S 185-5 0-50 186-2 0-67 96-8

MAC-values between the mode shapes have a good agreement with the baseline model in
Table 2. But the damping ratio of some modes obtained from the two techniques have
much differences, such as a damping of 0-86% with the multi-point pure mode excitation
method but 0-36% with the proposed method in the second mode. It may be difficult to
identify the reasonably accurate damping ratios in all modes from response-only using the
outlined frequency-domain method in the paper. A pair of closely spaced modes whose
frequencies are around 170 and 173 Hz were well extracted. The first 4 mode shapes
obtained from two different modal identification approaches are visualized in an airplane
model in Figure 4. The left results come from multi-point pure mode excitation method
and the right from the frequency-domain poly-reference modal parameter extraction.

The auto- and cross-power spectral densities between responses were fitted by using
eighteen identified poles in the frequency band 0-200 Hz. Synthesized auto- and cross-
power spectral densities of the responses are overlaid with actual measured auto- and
cross-power spectral density data in Figure 5, which shows a good agreement. The dashed
lines correspond to the measured power spectral densities, and the solid lines show the
synthesized power spectral densities. The plot illustrates how the synthesis of data can be
used to validate the modal model.

4. CONCLUSION

The paper aims to present a modal identification technique from output-only data based
on coupling the cross-correlation technique with conventional frequency-domain poly-
reference modal identifications. It uses the auto- and cross-power spectral density
functions between the measured responses instead of frequency response functions and
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Figure 4. Comparison of mode shapes from two different methods. (a) The first mode shape from two
different methods; (b) the second mode shape from two different methods; (c) the third mode shape from two
different methods and (d) the fourth mode shape from two different methods.

auto- and cross-correlation functions instead of impulse response functions under the
assumption of white-noise input forces. When applied to an experiment using an airplane
model, it yielded good results. The procedure to solve the problem of a vibrating system
from output-only data is divided into three parts:

(a) Acquire response data from the operating structure under relatively stationary
operating conditions. Long-time series of response data are desired to allow
significant averaging of the data.

(b) Calculate auto- and cross-power spectral densities from these time histories. The
cross-powers of each output channel will be calculated with respect to a subset of
the output channels that function as references.

(c) Use the frequency-domain poly reference modal identification scheme to extract the
modal parameters from output-only data by treating the auto- and cross-power
spectral density functions of responses instead of frequency response functions in
the traditional frequency-domain modal parameter extraction.



—
—
BN |
N

F. SHEN ET AL.

20 20
g g 10}
— N
5 )
> L
8 g °
§ - 8
T T -10
. :
24
o} g -20 [
g g
4 =
(@] o
0 20 40 60 80 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200
(a) Frequency (Hz) b) Frequency (Hz)
20
o o
o =
= g
O] ]
= =
B B
o} o}
© ©
T T
o} o}
g g
] )
¢} ¢}
50 . . . . . . . . . 50 . . . . . . . . .
0O 20 40 60 80 100 120 140 160 180 200 0O 20 40 60 80 100 120 140 160 180 200
(C) Frequency (Hz) (d) Frequency (Hz)

Figure 5. Comparison between measured (dashed line) and synthesized (solid line) power spectral densities. (a)
Comparison between measured and synthesized auto-power spectral densities of point 1; (b) comparison between
measured and synthesized auto-power spectral densities of point 2; (c) comparison between measured and
synthesized auto-power spectral densities between point 3 and point 1 and (d) comparison between measured and
synthesized auto-power spectral densities between point 4 and point 2.

The main features of the outlined frequency-domain poly reference modal identification

method from only multi-output data can be summarized as follows:

(a) This method can obtain the global modal parameters of the system using all the
measured data simultaneously. The system resonances are determinated by matrix
operation not engineering skills.

(b) It does not require the modes of the structure to be sufficiently far apart. Some
closely spaced modes of the vibration system can be identified well.

(c) It is convenient to check the quality of the modal parameters derived from the
proposed technique by overlaying the synthesized auto- and cross-powers with the
measured data.

(d) This technique based on that cross-correlation functions can be expressed in the
same form as impulse response functions under the assumption of white-noise input
forces.

(e) It is difficult to obtain reasonably accurate estimates for modal damping ratios of
practical structures from response-only using the presented technique.

(f) When the total number of measured responses is greater than the number of the
modes in the frequency range of analysis, singular value truncation technique can be
adopted to reduce the model order if a drop between singular values is apparent. But
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for some practical reasons, the drop may become not apparent, the selection of the
model order will become more complex and other techniques such as stabilization
diagrams are needed to find the correct model order.
(g) It does not meet the strongly non-linear problem during the whole computing.
The good performance of the proposed frequency-domain technique has been shown in

an experiment using an airplane model in this paper. Further investigation can be made of
modal identification for practical large structures such as long-span bridges and tall
buildings.
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APPENDIX A: NOMENCLATURE

damping matrix

expectation operator

vector of random forcing function

white-noise input at the /th d.o.f.

auto- and cross-power spectral density function matrix between N and P responses
which serve as references

cross-power spectral density function between the output n and the output p
order-reduced cross-power spectral density matrix with dimension N, x P
impulse response function matrix

impulse response function at the nth d.o.f. due to the input at the /th d.o.f.
transpose and complex conjugate of matrix

frequency response function matrix

frequency response function at the nth d.o.f. due to the input at the /th d.o.f.
unit matrix

imaginary part of the rth eigenvalue A,

stiffness matrix

excitation point index

number of inputs

mass matrix

output point index

number of outputs

number of system modes in the frequency range of interest

number of system d.o.f.s

null vector, null matrix

response point index served as reference

number of references

vector of modal co-ordinates

rth component of modal co-ordinates vector {g(z)}

constant matrix filled up with the term Q,,

auto- and cross-correlation function matrix

cross-correlation function between the output n and the output p
cross-correlation function between two response signals y,;(¢) and y,(¢)
real part of the rth eigenvalue 4,

time separation

matrix composed of singular vectors of matrix [Z]

matrix containing the singular vectors corresponding to non-zero singular values of
matrix [Z]

matrix containing the singular vectors corresponding to zero singular values of
matrix [Z]

kth discrete frequency in the measurement range

rth damped natural frequency

modal participation factor matrix

modal participation factor

system matrix

order-reduced system matrix with dimension N, x N,

vector of random displacements

response at the nth d.o.f. due to the input at the /th d.o.f.

response at the pth d.o.f. due to the input at the /th d.o.f.

co-ordinate square difference matrix related to [G(jw)]

Dirac delta function

complex eigenvalue matrix

rth eigenvalue of the system

complex modal matrix

mode shape matrix of the system

rth mode shape vector of the system

nth component of the rth eigenvector {y,}

order-reduced eigenvector matrix
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damping ratio of the rth mode

transpose of matrix, vector

generalized inverse of matrix

diagonal matrix containing the singular values of matrix [Z] in descending order
matrix containing N, non-zero singular values of matrix [Z] in descending order
the first non-zero singular value of matrix [Z]

the second non-zero singular value of matrix [Z]

the last non-zero singular value of matrix [Z]
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