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Modal parameter identification is used to identify those parameters of the model which
describe the dynamic properties of a vibration system. Classical modal parameter
extractions usually require measurements of both the input force and the resulting
response in laboratory conditions. However, when large-scale operational structures are
subjected to random and unmeasured forces such as wind, waves, or aerodynamics, modal
parameters estimation must base itself on response-only data. Over the past years, many
time-domain modal parameter identification techniques from output-only have been
proposed. Among them, the natural excitation technique (NExT) has been a very powerful
tool for the modal analysis of structures excited in operating environment. This issue
reviews the theoretical development of natural excitation technique (NExT), which uses the
cross-correlation functions of measured responses coupling with conventional time-domain
parameter extraction under the assumption of white-noise random inputs. Then a
frequency-domain poly reference modal identification scheme by coupling the cross-
correlation technique with conventional frequency-domain poly reference modal parameter
extraction is presented. It uses cross-power spectral density functions instead of frequency
response functions and auto- and cross-correlation functions instead of impulse response
functions to estimate modal parameters from response-only data. An experiment using an
airplane model is performed to investigate the effectiveness of the cross-correlation
technique coupled with frequency-domain poly reference modal identification scheme.

# 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

Classical modal parameter identifications are usually based on frequency response
functions or impulse response functions that require measurements of both the input force
and the resulting response. However, for some practical reasons, modal parameter must be
extracted only from response data sometimes. For example, for large structures (such as
bridges, offshore platforms, and wind turbines), it is very difficult and expensive to
measure actual excitation (such as wind, road noise, and wave excitation). The huge
amount of energy necessary to induce structural vibrations may cause local damage and
excitation becomes very difficult to generate. Additionally, the real operating conditions
may differ significantly from the laboratory conditions as the systems are to some extent
non-linear or subject to non-linear constraining conditions (e.g., aero-elastic interaction of
aircraft in flight) [1]. Sometimes it is not suitable to predict the correct system behavior
with the in-laboratory obtained modal models. Therefore, in these applications, the system
identification must be done on the basis of response-only data available.
0022-460X/02/$35.00 # 2002 Elsevier Science Ltd. All rights reserved.
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The problem of output-only modal analysis has gained considerable attention in recent
years. There have been several different approaches to estimate modal parameters from
output-only data. They include peak-picking from power spectral density (PSD) functions
[2–4], Least-squares curve fitting technique [5, 6], autoregressive moving average (ARMA)
models [1, 7–10], the subspace techniques [11–15], and the natural excitation technique
(NExT) [16, 17] using cross-correlation functions instead of impulse response functions
coupled with some time-domain modal identification schemes such as the random
decrement processing with the Ibrahim time-domain (ITD) technique [18], the maximum
entropy method (MEM) [6], and the polyreference least-squares complex exponential
(PRLSCE) method [1, 11]. The natural excitation technique using cross-correlation
functions in time domain has been a very powerful tool for the modal analysis of
structures under ambient excitation. However, among them, there are only a limited
number of approaches in the frequency domain applicable to modal identification of
structures using response data, such as the peak-picking technique to the auto- and cross-
power spectra of the operational responses [2–4], and the curve-fitting technique to seek
optimal modal parameters [5]. The peak-picking method has been a typical frequency-
domain method on response-only, but it suffers from some disadvantages. For example,
the modes of the structure should be sufficiently far apart and requires a lot of engineering
skills to select the peaks that correspond to system resonances. Although the curve-fitting
technique can eliminate these disadvantages, it often meets the minimization problem that
is strongly non-linear and methods of linear algebra are not directly applicable to get the
solution. In practice, additional assumptions are commonly used to simplify the
minimization problem, which usually leads to reduction in the accuracy of the
reconstructed eigenvalues and eigenvectors.

The proposed technique in this paper couples the cross-correlation technique with the
conventional frequency-domain poly reference parameter extraction to estimate modal
parameters from response-only. It uses cross-power spectral density functions between the
outputs instead of frequency response functions and auto- and cross-correlation functions
instead of impulse response functions to estimate modal parameters from response-only
data. The presented scheme has none of the above disadvantages of the peak-picking
technique and the curve-fitting technique applied to the power spectra. This issue reviews
the theoretical development of natural excitation technique (NExT) and gives how the
modal parameters can be determined by the proposed frequency-domain technique for a
linear, complex-mode system under the white-noise excitation. An application of the
method is presented for an airplane model.

2. THEORETICAL ASPECTS

2.1. THEORETICAL DEVELOPMENT OF NATURAL EXCITATION TECHNIQUE (NEXT)

The following derivation holds for a general class of stationary random inputs. We can
describe the behavior of the system by the equations of motion [16]:

½M�f .yyðtÞg þ ½C�f ’yyðtÞg þ ½K �fyðtÞg ¼ f f ðtÞg; ð1Þ

where [M] is the mass matrix, [C] is the damping matrix, [K ] is the stiffness matrix, f f ðtÞg
is the vector of random forcing function, {yðtÞ} is the vector of random displacements.

Let us introduce

½M�f ’yyðtÞg 	 ½M�f ’yyðtÞg ¼ f0g: ð2Þ
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Combining equation (1) with equation (2) results in the state-space model correspond-
ing to the dynamic equations [15]:

½A�f ’YYðtÞg þ ½B�fY ðtÞg ¼ fFðtÞg; ð3Þ
where

½A� ¼
½C� ½M�
½M� ½0�

" #
; ½B� ¼

½K � ½0�
½0� 	½M�

" #
; fY ðtÞg ¼

fyðtÞg
f ’yyðtÞg

( )
; fFðtÞg ¼

f f ðtÞg
f0g

( )
:

We can use a modal transformation:

fY ðtÞg ¼ ½f�fqðtÞg ¼
½c�

½c�½L�

" #
fqðtÞg; ð4Þ

where [f] is the 2Nm 
 2Nm complex modal matrix, {qðtÞ} is the 2Nm 
 1 vector of
modal co-ordinates, [c] is the Nm 
 2Nm mode shape matrix, [L] is the 2Nm 
 2Nm

complex eigenvalue matrix, Nm is the number of system d.o.f..
Then we can derive

fyðtÞg ¼ ½c�fqðtÞg ¼
X2Nm

r¼1

fcrgqrðtÞ; ð5Þ

where {cr}is the vector of the rth mode shape, qrðtÞ is the rth component of vector {qðtÞ}.
We use the orthogonality of mode shapes

½f�T½A�½f� ¼ ½a�; ½f�T½B�½f� ¼ ½b�; ð6Þ
where T denotes the transpose, [a], [b] are diagonal matrices.

Premultiplying equation (3) by ½f�T gives

½f�T½A�f ’YY ðtÞg þ ½f�T½B�fY ðtÞg ¼ ½f�TfFðtÞg: ð7Þ
Substituting equation (4) into equation (7) results in the following:

½f�T½A�½f�f ’qqðtÞg þ ½f�T½B�½f�fqðtÞg ¼ ½f�TfFðtÞg: ð8Þ
A set of scalar equations in the modal co-ordinates can be given as follows:

ar ’qqrðtÞ þ brqrðtÞ ¼ fcrg
Tff ðtÞg; ð9Þ

where ar; br are the elements of diagonal matrices [a], [b].
The solution of equation (9) can be obtained from Duhamel integral assuming zero

initial conditions:

qrðtÞ ¼
1

ar

Z t

	1
fcrg

Tf f ðtÞgelrðt	tÞ dt; ð10Þ

where lr ¼ 	br=ar:
Equations (5) and (10) can now be used to obtain the solution for {yðtÞ}:

fyðtÞg ¼
X2Nm

r¼1

1

ar

fcrg
Z t

	1
fcrg

Tff ðtÞgelrðt	tÞ dt: ð11Þ

The response ynlðtÞ at the nth d.o.f. due to a single input force flðtÞ at the lth d.o.f. can
be derived as

ynlðtÞ ¼
X2Nm

r¼1

1

ar

cnrclr

Z t

	1
flðtÞelrðt	tÞ dt; ð12Þ

where cnr is the nth component of the rth mode shape vector {cr}.
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Define the cross-correlation function RnplðTÞ as the expected value of the product of
two stationary responses ynlðtÞ and yplðtÞ due to the single input at the lth d.o.f. evaluated
at a time separation of T [18]:

RnplðTÞ ¼ E½ynlðt þ TÞyplðtÞ�; ð13Þ

where E is the expectation operator.
Substituting equation (12) into equation (13) results in the following:

RnplðTÞ ¼
X2Nm

r¼1

X2Nm

s¼1

1

aras

cnrclrcpscls

Z t

	1

Z tþT

	1
elrðtþT	sÞ elsðt	tÞE½ flðsÞflðtÞ� ds dt: ð14Þ

Assuming flðtÞ is white noise, then

E½ flðsÞflðtÞ� ¼ aldðt	 sÞ; ð15Þ

where al is a constant and dðtÞ is the Dirac delta function.
Substituting equation (15) into equation (14) and collapsing the integration produces

the following:

RnplðTÞ ¼
X2Nm

r¼1

X2Nm

s¼1

alcnrclrcpscls

arasð	lr 	 lsÞ
elrT : ð16Þ

Summing over all the inputs flðtÞ; l ¼ 1; 2; . . . ;L; which are assumed to be uncorrelated
with one another, we can get the cross-correlation function RnpðTÞ between the output n

and the output p:

RnpðTÞ ¼
X2Nm

r¼1

cnrQpr e
lrT ; ð17Þ

where Qpr is a new constant defined by

Qpr ¼
X2Nm

s¼1

XL

l¼1

	alclrcpscls

arasðlr þ lsÞ
: ð18Þ

It shows that the cross-correlation function in equation (17) is a sum of complex
exponential functions of the same form as the impulse response function of the original
system in the following:

hnlðtÞ ¼
X2Nm

r¼1

cnrWlr e
lrt; ð19Þ

where hnlðtÞ is the impulse response at point n due to the input force at point l; Wlr is the
modal participation factor.

Consequently, the classical modal parameter techniques using impulse response
functions as input like eigensystem realization algorithm (ERA) and poly-reference
least-squares complex exponential (PRLSCE) method are appropriate to extract
the modal parameters from response-only. This technique is generally referred to as
NExT [16].

2.2. POWER SPECTRAL DENSITY FUNCTIONS WITH THE SAME FORM AS FREQUENCY

RESPONSE FUNCTIONS

The Fourier transform of the impulse response function hnlðtÞ in equation (19)
can be performed, then the frequency response function HnlðjoÞ can be expressed as
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follows:

HnlðjoÞ ¼
X2Nm

r¼1

cnrWlr

jo	 lr

: ð20Þ

The cross-power spectral density function GnpðjoÞ is the Fourier transform of the cross-
correlation function RnpðTÞ in equation (17), and can be expressed as

GnpðjoÞ ¼
X2Nm

r¼1

cnrQpr

jo	 lr

: ð21Þ

It can be easily shown that the cross-power spectral density function in equation (21) is a
sum of fraction functions of the same form as the frequency response function of the
original system in equation (20). Each fraction has a pole that implies a natural frequency
and damping ratio corresponding to a structural mode, and the residue cnrQpr in equation
(21) and cnrWlr in equation (20) are proportional to the nth component cnr of the mode
shape {cr}. It is well known that the term cnrWlr in the frequency response function in
equation (20) can be identified as the mode shape component. When the input forces are
not measurable, the residue cnrQpr in equation (21) can be used to derive the complete
mode shape by selecting a common reference station p to eliminate the term Qpr:
Consequently, the cross-power spectral density functions between responses can be used to
estimate modal parameters from output-only instead of frequency response functions in
frequency-domain modal identifications.

2.3. THE FREQUENCY-DOMAIN POLY-REFERENCEMODAL EXTRACTION FROM

RESPONSE-ONLY

In conventional modal analysis, the frequency-domain poly-reference modal identifica-
tion using frequency response functions [19] is a well-known technique to derive global
estimates of modal parameters.

From equation (19), we obtain the impulse response function matrix at N response
stations due to force inputs at points 1; 2; . . . ;L:

½hðtÞ� ¼ ½c�½eLt�½W �; ð22Þ

where [hðtÞ] is the impulse response function matrix, [W ] is the modal participation factor
matrix.

We can get the first derivatives of the above equation as

½ ’hhðtÞ� ¼ ½c�½L�½eLt�½W �: ð23Þ

The Laplace transform of equations (22) and (23) can be, respectively, derived as

½HðsÞ� ¼ ½c�ðs½I � 	 ½L�Þ	1½W � ð24Þ

and

½ ’HHðsÞ� ¼ ½c�½L�ðs½I � 	 ½L�Þ	1½W �; ð25Þ

where [HðsÞ] is the transfer function matrix, [I ] is a unit matrix.
Let us constitute a new matrix equation with equations (24) and (25) as

½HðsÞ�
½ ’HHðsÞ�

" #
¼

½c�
½½c�½L��

" #
ðs½I � 	 ½L�Þ	1½W � ¼ ½f�½OðsÞ�; ð26Þ

where ½OðsÞ� ¼ ðs½I � 	 ½L�Þ	1½W �:
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In this method, a system matrix [X ] is defined so that it satisfies

½X �½c� þ ½c�½L� ¼ ½0�: ð27Þ

It can be rewritten as

½½X �..
.
½I ��

½c�
½c�½L�

" #
¼ ½½X �..

.
½I ��½f� ¼ ½0�: ð28Þ

Postmultiplying the above equation by [OðsÞ], according to equation (26), we can obtain

½½X �..
.
½I ��½f�½OðsÞ� ¼ ½½X �..

.
½I ��

½HðsÞ�
½ ’HHðsÞ�

" #
¼ ½0�: ð29Þ

Equation (29) can also be expressed in the following way:

½X �½HðsÞ� þ ½ ’HHðsÞ� ¼ ½0�: ð30Þ

According to the following relationship

½ ’HHðsÞ� ¼ s½HðsÞ� 	 ½hðtÞ�jt¼0: ð31Þ

Equation (30) can be written as

½X �½HðsÞ� þ s½HðsÞ� 	 ½hðtÞ�jt¼0 ¼ ½0�: ð32Þ

Let s ¼ jo; we can get

½X �½HðjoÞ� þ jo½HðjoÞ� 	 ½hðtÞ�jt¼0 ¼ ½0�; ð33Þ

where ½HðjoÞ� is the frequency response function matrix.
It has been shown that, under the assumption that the system is excited by stationary

white noise, cross-correlation functions between the outputs have the same form as
impulse response functions and power spectral density functions as frequency response
functions. Subsequently, the frequency-domain poly-reference modal identification is
appropriate to extract the modal parameters from response-only data measured under
operational conditions by using the power spectral densities of responses instead of
frequency response functions and cross-correlation functions instead of impulse response
functions.

Define the auto- and cross-correlation function matrix [RðTÞ] between N and P

responses which serve as references as

½RðTÞ� ¼

R11ðTÞ R12ðTÞ    R1PðTÞ
R21ðTÞ R22ðTÞ    R2PðTÞ

..

. ..
. ..

. ..
. ..

.

RN1ðTÞ RN2ðTÞ    RNPðTÞ

2
666664

3
777775: ð34Þ

Equations (17) and (34) can now be used to obtain

½RðTÞ� ¼ ½c�½eLT �½Q�; ð35Þ

where [Q] is a constant matrix filled up with the term Qpr and at T ¼ 0; the following
results:

½RðTÞ�jT¼0 ¼ ½c�½Q�: ð36Þ

From the Fourier transform of equation (35), we also can get

½GðjoÞ� ¼ ½c�ðjo½I � 	 ½L�Þ	1½Q�; ð37Þ
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where [GðjoÞ] is the auto- and cross-power spectral density function matrix of measured
responses.

Using the cross-power spectral density function matrix [GðjoÞ] instead of the frequency
response function matrix [HðjoÞ] and the auto- and cross-correlation function matrix
[RðTÞ] instead of the impulse response function matrix [hðtÞ] in equation (33), the
following results:

½X �½GðjoÞ� þ jo½GðjoÞ� 	 ½RðTÞ�jT¼0 ¼ ½0�: ð38Þ

Substituting equation (36) into equation (38), we can get

½X �½GðjoÞ� þ jo½GðjoÞ� 	 ½c�½Q� ¼ ½0�: ð39Þ

An over-determined set of equations can be obtained for all discrete frequencies
o1;o2; . . . ;oK in the frequency range of measurement:

½X �½Gðjo1Þ� 	 ½c�½Q� ¼ 	jo1½Gðjo1Þ�; ð40Þ

½X �½Gðjo2Þ� 	 ½c�½Q� ¼ 	jo2½Gðjo2Þ�; ð41Þ

½X �½GðjoKÞ� 	 ½c�½Q� ¼ 	joK ½GðjoKÞ�: ð42Þ

These equations can also be written as

½½X �..
.
	 ½c�½Q��

½D�
½I � ½I � . . . ½I �

 �
" #

¼ ½D�½O�; ð43Þ

where

½D� ¼ ½Gðjo1Þ� ½Gðjo2Þ� . . . ½GðjoKÞ�
 �

;

½O� ¼ 	diag jo1½I � jo2½I � . . . joK ½I �
 �

:

From equation (43), we can get

½V � ¼ ½½X �..
.
	 ½c�½Q�� ¼ ½D�½O�

½D�
½I � ½I � . . . ½I �

 �
" #þ

; ð44Þ

where + denotes the generalized inverse. The matrix [V ] can be obtained in a least-squares
sense by considering all available of the measured power spectral densities. The matrix [X ]
is given by the first N columns of matrix [V ], and the negative of matrix [c] [Q] is given by
the last P columns (from N þ 1 to N þ P) of matrix [V ].

According to equation (27), an eigenvalue problem can be formulated as

½X �fcrg þ lrfcrg ¼ f0g: ð45Þ

Once the system matrix [X ] is known, in the case of complex conjugate pairs being
considered, 2N complex eigenvalues lr and 2N complex eigenvector {cr} can be obtained
from equation (45). The poles lr of the original vibrating system can be used to obtain the
damped natural frequency onr by the following equation:

onr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ReðlrÞ2 þ ImðlrÞ2

q
: ð46Þ

And the damping ratio xr of the rth mode can be given by

xr ¼ 	 ReðlrÞ
onr

; ð47Þ

where Reð  Þ denotes the real part, Imð  Þ denotes the imaginary part.
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The rth eigenvector {cr} corresponding to the eigenvalue lr of the system matrix [X ] is
just the rth mode shape of the vibrating system.

2.4. POWER SPECTRAL DENSITY SYNTHESIS

Equation (39) can be expressed as follows:

ð½X � þ jo½I �Þ½GðjoÞ� ¼ ½c�½Q�: ð48Þ
Let ½J� ¼ ½c�½Q�; the auto- and cross-power spectral density matrix [GðjoÞ] between the
outputs can be written as

½GðjoÞ� ¼ ð½X � þ jo½I �Þþ½J�: ð49Þ
It can be easily shown that matrix ½Gðjo1Þ�; ½Gðjo2Þ�; . . . ; ½GðjoKÞ� can be derived from
equation (49) by considering all frequencies in the selected frequency interval. Therefore, it
can be used to graphically check the quality of the output-only modal model by overlaying
the actual test data with the synthesized data.

2.5. REDUCTION OF MODEL ORDER

In some applications, the number of measured locations N is often greater than the
number of system modes Ne in the frequency range of interest. When matrix [V ] is
obtained from equation (43), it will be time and core storage consuming and lead to the
spurious modes. Therefore, the selection of model order should be done to solve this
problem. Inspection of the singular values [20] might be helpful for finding the correct
model order in the proposed frequency-domain modal identification.

Define a co-ordinate square difference matrix as

½Z� ¼
XK

k¼1

Reð½GðjokÞ� ½GHðjokÞ�Þ; ð50Þ

where H denotes the complex conjugate and matrix transpose.
Performing an SVD decomposition on matrix [Z] gives the following:

½Z� ¼ ½U �½S�½S�T ¼ ½U1� ½U2�
 � ½S1� ½0�

½0� ½0�

" #
½S1�T

½S2�T

" #
¼ ½U1�½S1�½S1�T; ð51Þ

where [S1] contains Ne non-zero singular values in descending order with

½S1� ¼ diag½e1e2 . . . eNe�; e15e2 . . . eNe > 0; ð52Þ
[U1] is an N 
 Ne matrix which contains the singular vectors corresponding to non-zero
singular values, [U2] is an N 
 ðN 	 NeÞ matrix which contains the singular vectors
corresponding to zero singular values. The model order is estimated as Ne by truncating
the singular values. In practice, the engineer often select Ne such that eNeceNeþ1:

Matrix ½U1�T can be used to reduce the order of power spectral density matrix [GðjoÞ] as
the following:

½GðjoÞ�redu ¼ ½U1�T½GðjoÞ�; ð53Þ
where ½GðjoÞ�redu is a matrix with dimension Ne 
 P: In practical computing, feeding
order-reduced matrix ½GðjoÞ�redu instead of matrix [GðjoÞ] in equation (44) allows to
obtain order-reduced system matrix ½X �redu with dimension Ne 
 Ne: Solving an eigenvalue
problem of matrix ½X �redu can lead to the evaluations of 2Ne discrete complex eigenvalues
and 2Ne complex eigenvectors in the case of complex conjugate pairs being considered.
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The eigenvalues lr can be used to estimate the damped natural frequency onr and the
damping ratio xr of the original vibrating system according to equations (46) and (47).

Substituting equation (37) into equation (53) produces the following:

½GðjoÞ�redu ¼ ½U1�T½c�ðjo½I � 	 ½L�Þ	1½Q� ¼ ½c�reduðjo½I � 	 ½L�Þ	1½Q�; ð54Þ

where ½c�redu is the order-reduced eigenvector matrix.
We can get

½c�redu ¼ ½U1�T½c�: ð55Þ

The mode shape matrix [c] of the vibrating system at the sensor locations can be given by

c½ �T¼ credu½ �T U1½ �þ: ð56Þ

Sometimes the criteria of an SVD technique is not of great use as a drop or a break
between singular values is not apparent in practice. Other techniques such as stabilization
diagrams are needed in order to find the correct model order.

3. APPLICATION

In this context, a case study was performed employing the data acquired from a test
conducted on an airplane model in order to assess the usefulness of the algorithm
described above for modal identification from response-only.

3.1. DESCRIPTION OF TEST STRUCTURE AND TESTS

The airplane model is made of aluminum and the fuselage is 1000mm long and the
wingspan 1100mm wide. It was suspended on three flexible threads at the fuselage. The
responses were measured only in the vertical direction at 24 points for vertical excitation at
two symmetrical excitation points. Figure 1 shows the distribution of the 24 acceleration
transducers.

Two uncorrelated white noise signals were applied to the 2 shakers. Figure 2 shows the
auto-power spectral densities of the two input forces, revealing that the actual excitation
was not perfectly flat due to the interaction between shaker and structure. The MVMAS-3
multi-vibration measurement and analysis system with 64 input channels was employed to
1 2

Excitation
Point

Suspending Point

Measuring Point

Excitation
Point

3 4

Figure 1. The airplane model with indication of the distribution of transducers.
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Figure 2. Auto-power spectral density of the input forces. (a) The auto-power spectral density of left input
force and (b) the auto-power spectral density of right input force.
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acquire the response data at the 24 locations with a sampling rate of 512Hz, which results
in a bandwidth of 0–200Hz. The responses from 24 acceleration transducers were
converted into displacement response signals by computing. Then all the responses were
chosen as reference points and the auto- and cross-power spectral densities of all the
responses were calculated for the output-only modal analysis, which enables a global
estimate of modal parameters of the structure. The segment size equaled 1024 and no
overlap was used. A Hanning window was used to avoid leakage, and about 40 averages
were performed for 40 960 data samples corresponding to a signal duration of 80 s. The
singular value truncation technique was used to reduce the model order when the number
of measured locations is greater than the number of modes. The order-reduced cross-
power spectral density matrix was fed to the technique presented in this paper to extract
the modal parameters from output-only.

The modal parameters were obtained using multi-point pure mode excitation technique,
yielding the baseline model for comparison purposes.
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3.2. TEST RESULTS

In the frequency range 0–200Hz, the break in singular values of matrix [Z] occurs
between 18 and 19 as shown in Figure 3. It can also be seen from Table 1 that the largest
ratio of two adjacent singular values is 13533 between 18 and 19 but the others are much
less. The order of the model in the presented scheme can be considered as 18. However,
sometimes the inspection of singular values does not show a significant drop, and this
information will have an influence upon the selection of system mode number in the
interested frequency range. A lower value for the model order will result in omitted system
modes. When the number of the model order is chosen higher than the number of true
modes, the spurious modes will be introduced and the computational load will increase. In
this case, other techniques such as stabilization diagrams are then needed to help finding
the correct model order.

Table 2 lists the results for all found modes without counting the rigid-body modes from
both multi-point pure mode excitation technique and the presented frequency-domain
poly-reference modal identification with power spectral densities. In addition to the
frequencies and damping ratios, the modal assurance criterion MAC-value between the
mode shapes extracted by multi-point pure mode excitation method and the mode
shapes extracted by the technique described above are given. Both the frequencies and
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Figure 3. Singular values of coordinate square difference matrix [Z].

Table 1

Singular values of co-ordinate square difference matrix [Z]

No. 1 2 3 4 5 6 7 8
Singular value 20954 12290 11150 4374 3579 2861 2339 1477

No. 9 10 11 12 13 14 15 16
Singular value 1015 729 343 259 200 135 472 262

No. 17 18 19 20 21 22 23 24
Singular value 061 019 0014 00062 00042 00028 00026 00015



Table 2

Comparison of modal parameters from two different techniques

Mode no. Symmetry/
antisymmetry

Multi-point pure mode
excitation method

Frequency-domain modal identification
technique from output-only

Freq. (Hz) Damping (%) Freq. (Hz) Damping (%) MAC (%)

1 S 148 514 153 476 982
2 A 236 086 242 036 991
3 A 351 425 362 405 986
4 S 450 167 449 201 992
5 A 525 311 524 353 984
6 S 634 150 647 161 990
7 A 692 145 696 170 967
8 S 748 656 753 505 832
9 A 915 102 923 135 921
10 S 987 136 976 092 988
11 A 1073 093 1073 096 893
12 A 1129 158 1117 105 909
13 S 1435 070 1434 082 965
14 S 1515 039 1507 064 988
15 A 1583 048 1582 039 990
16 S 1702 105 1708 088 976
17 A 1733 054 1734 052 825
18 S 1855 050 1862 067 968
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MAC-values between the mode shapes have a good agreement with the baseline model in
Table 2. But the damping ratio of some modes obtained from the two techniques have
much differences, such as a damping of 086% with the multi-point pure mode excitation
method but 036% with the proposed method in the second mode. It may be difficult to
identify the reasonably accurate damping ratios in all modes from response-only using the
outlined frequency-domain method in the paper. A pair of closely spaced modes whose
frequencies are around 170 and 173Hz were well extracted. The first 4 mode shapes
obtained from two different modal identification approaches are visualized in an airplane
model in Figure 4. The left results come from multi-point pure mode excitation method
and the right from the frequency-domain poly-reference modal parameter extraction.

The auto- and cross-power spectral densities between responses were fitted by using
eighteen identified poles in the frequency band 0–200Hz. Synthesized auto- and cross-
power spectral densities of the responses are overlaid with actual measured auto- and
cross-power spectral density data in Figure 5, which shows a good agreement. The dashed
lines correspond to the measured power spectral densities, and the solid lines show the
synthesized power spectral densities. The plot illustrates how the synthesis of data can be
used to validate the modal model.

4. CONCLUSION

The paper aims to present a modal identification technique from output-only data based
on coupling the cross-correlation technique with conventional frequency-domain poly-
reference modal identifications. It uses the auto- and cross-power spectral density
functions between the measured responses instead of frequency response functions and



(a)

(b)

(c)

(d) 

(Left: Multi-point pure mode excitation method     Right: Presented frequency-domain technique)

Figure 4. Comparison of mode shapes from two different methods. (a) The first mode shape from two
different methods; (b) the second mode shape from two different methods; (c) the third mode shape from two
different methods and (d) the fourth mode shape from two different methods.
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auto- and cross-correlation functions instead of impulse response functions under the
assumption of white-noise input forces. When applied to an experiment using an airplane
model, it yielded good results. The procedure to solve the problem of a vibrating system
from output-only data is divided into three parts:

(a) Acquire response data from the operating structure under relatively stationary
operating conditions. Long-time series of response data are desired to allow
significant averaging of the data.

(b) Calculate auto- and cross-power spectral densities from these time histories. The
cross-powers of each output channel will be calculated with respect to a subset of
the output channels that function as references.

(c) Use the frequency-domain poly reference modal identification scheme to extract the
modal parameters from output-only data by treating the auto- and cross-power
spectral density functions of responses instead of frequency response functions in
the traditional frequency-domain modal parameter extraction.
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Figure 5. Comparison between measured (dashed line) and synthesized (solid line) power spectral densities. (a)
Comparison between measured and synthesized auto-power spectral densities of point 1; (b) comparison between
measured and synthesized auto-power spectral densities of point 2; (c) comparison between measured and
synthesized auto-power spectral densities between point 3 and point 1 and (d) comparison between measured and
synthesized auto-power spectral densities between point 4 and point 2.

F. SHEN ET AL.1176
The main features of the outlined frequency-domain poly reference modal identification
method from only multi-output data can be summarized as follows:

(a) This method can obtain the global modal parameters of the system using all the
measured data simultaneously. The system resonances are determinated by matrix
operation not engineering skills.

(b) It does not require the modes of the structure to be sufficiently far apart. Some
closely spaced modes of the vibration system can be identified well.

(c) It is convenient to check the quality of the modal parameters derived from the
proposed technique by overlaying the synthesized auto- and cross-powers with the
measured data.

(d) This technique based on that cross-correlation functions can be expressed in the
same form as impulse response functions under the assumption of white-noise input
forces.

(e) It is difficult to obtain reasonably accurate estimates for modal damping ratios of
practical structures from response-only using the presented technique.

(f) When the total number of measured responses is greater than the number of the
modes in the frequency range of analysis, singular value truncation technique can be
adopted to reduce the model order if a drop between singular values is apparent. But
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for some practical reasons, the drop may become not apparent, the selection of the
model order will become more complex and other techniques such as stabilization
diagrams are needed to find the correct model order.

(g) It does not meet the strongly non-linear problem during the whole computing.
The good performance of the proposed frequency-domain technique has been shown in

an experiment using an airplane model in this paper. Further investigation can be made of
modal identification for practical large structures such as long-span bridges and tall
buildings.
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APPENDIX A: NOMENCLATURE

[C] damping matrix
E expectation operator
{f ðtÞ} vector of random forcing function
flðtÞ white-noise input at the lth d.o.f.
[GðjoÞ] auto- and cross-power spectral density function matrix between N and P responses

which serve as references
GnpðjoÞ cross-power spectral density function between the output n and the output p
½GðjoÞ�redu order-reduced cross-power spectral density matrix with dimension Ne 
 P
[hðtÞ] impulse response function matrix
hnlðtÞ impulse response function at the nth d.o.f. due to the input at the lth d.o.f.
½ �H transpose and complex conjugate of matrix
[HðjoÞ] frequency response function matrix
HnlðjoÞ frequency response function at the nth d.o.f. due to the input at the lth d.o.f.
[I ] unit matrix
ImðlrÞ imaginary part of the rth eigenvalue lr

[K ] stiffness matrix
l excitation point index
L number of inputs
[M] mass matrix
n output point index
N number of outputs
Ne number of system modes in the frequency range of interest
Nm number of system d.o.f.s
{0}, [0] null vector, null matrix
p response point index served as reference
P number of references
{qðtÞ} vector of modal co-ordinates
qrðtÞ rth component of modal co-ordinates vector {qðtÞ}
[Q] constant matrix filled up with the term Qpr

[RðTÞ] auto- and cross-correlation function matrix
RnpðTÞ cross-correlation function between the output n and the output p
RnplðTÞ cross-correlation function between two response signals ynlðtÞ and yplðtÞ
ReðlrÞ real part of the rth eigenvalue lr

T time separation
[U ] matrix composed of singular vectors of matrix [Z]
[U1] matrix containing the singular vectors corresponding to non-zero singular values of

matrix [Z]
[U2] matrix containing the singular vectors corresponding to zero singular values of

matrix [Z]
ok kth discrete frequency in the measurement range
onr rth damped natural frequency
[W ] modal participation factor matrix
Wlr modal participation factor
[X ] system matrix
½X �redu order-reduced system matrix with dimension Ne 
 Ne

{yðtÞ} vector of random displacements
ynlðtÞ response at the nth d.o.f. due to the input at the lth d.o.f.
yplðtÞ response at the pth d.o.f. due to the input at the lth d.o.f.
[Z] co-ordinate square difference matrix related to [GðjoÞ]
dðtÞ Dirac delta function
[L] complex eigenvalue matrix
lr rth eigenvalue of the system
[f] complex modal matrix
[c] mode shape matrix of the system
{cr} rth mode shape vector of the system
cnr nth component of the rth eigenvector {cr}
½c�redu order-reduced eigenvector matrix
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xr damping ratio of the rth mode
½ �T; { }T transpose of matrix, vector
[ ]+ generalized inverse of matrix
½S� diagonal matrix containing the singular values of matrix [Z] in descending order
½S1� matrix containing Ne non-zero singular values of matrix [Z] in descending order
e1 the first non-zero singular value of matrix [Z]
e2 the second non-zero singular value of matrix [Z]
eNe the last non-zero singular value of matrix [Z]
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